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SUFFICIEM' CONDITIONS FOR STABILITY AND INSTABILITY 

OF AUI'ONOMOUS FUNCTIONAL - DIFFEREXTIAL EQUATIONS 

Jack K. Hale 

1. Introduct ion and notation. An autonomous func t iona l -d i f f e ren t i a l  equation 

with f i n i t e  time l a g  i s  a generalization of t he  usua l  concept of d i f f e r e n t i a l  

equations with retarded arguments of t h e  form 

- 

S ( t )  = F ( x ( t ) ,  x(t-Tl), ..., x(t-.,)), 

where the  T are pos i t ive  constants. I n  t h i s  paper, we w i l l  be concerned w i t h  

t h e  appl icat ion of t he  concept of Lyapunov funct ionals  t o  t h e  determination of 

s u f f i c i e n t  conditions f o r  t he  s t a b i l i t y  of such systems. Lyapunov funct ionals  

have been applied t o  these  equations by many authors and t h e  reader  should con- 

sult t h e  book of Krasovskii [l] f o r  a de ta i led  bibliography. Lyapunov func- 

t i o n a l s  can a l so  be employed t o  discuss  t h e  s t a b i l i t y  of nonautonomous systems; 

t h a t  i s ,  systems i n  which F contains t exp l i c i t l y ,  but we r e s t r i c t  ourselves 

t o  t h e  antonomous case s ince more general r e s u l t s  a r e  obtainable. I n  pa r t i cu la r ,  

we wish t o  d i scuss  the  implications of a theorem of LaSalle f o r  ordinary 

d i f f e r e n t i a l  equations properly extended t o  func t iona l -d i f f e ren t i a l  equations. 

Some of t h e  r e s a l t s  of t h i s  paper have been announced i n  , and t h e  present 

paper contains  t h e  complete proofs o f  those results as w e l l  as some new r e s u l t s  

j \ 

121 

131 

a To d iscuss  func t iona l -d i f fe ren t ia l  equations i n  t h e  proper s e t t i ng ,  it i s  

necessary t o  introduce some notation. 

of n-vectors and 1x1 will denote t h e  norm of t h e  vector x i n  E": I f  

E? w i l l  denote t h e  rea l  Euclidean space 
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r > o is given, 

t ims  with domain [-r ,  0 )  and range i n  E". The n o m  i r .  this space wili te 

c = C ( [ - r ,  01 , E") w i l l  cien0t.e t h e  qmce of c ~ ~ ~ t i n u s . i s  fmc-  - 

t h e  uniform one: 11911 = ma-=< 8< I q ( e ) l  f o r  qi i n  C. ~ J p p o s ~  x i s  

m y  given function with domain [-r, -) and rmge i n  Erl. Fqr any t ; T I ,  

we w i l l  l e t  x denote .#+e r e s t r i c t i o n  of x t o  t h e  i n t e r v a l  [t - r ,  t]; 

#i&-k, xt i s  an element of C defined by xt(e)  = x ( t  + El) ,  -r < 8 < 0. 

I n  o ther  words, t h e  graph of xt i s  t h e  graph of x on [ t  - r ,  51 

eeepk it. %e sh i f ted  t o  t h e  in t e rva l  

c -  

- 
C L t A d A  9 & 

*-?d-kp A 

A - -  

[-r, 01. The reader is urged a t  t h i s  

point t o  use extreme caution in distinguishing between the  following sjmkols: 

x i s  a function taking [-r ,  m] i n to  E", xt f o r  t> 0 i s  a function taking 

[-r, 01 i n t o  En, x ( t )  i s  t h e  value of x a t  t and x,(6) i s  t h e  value 

of t a t  e ;  ~ ~ ~ ~ a ~ ~ a n p l C ; n e w a U r j i c . ~ ~ + ~ a ~ *  

- 

If H i s  a given pos i t i ve  constant, w e  u s e  the notation CH f o r  the  set 

((P i n  C: IIP11 < H) j t h a t  i s ,  CH i s  t h e  open b a l l  i n  C of radius H. 

If f(9) i s  a function defined far every rp i n  CH and k ( t )  i s  the  

r i g h t  hand der ivat ive of 

d i f f e r e n t i a l  equation: 

x( t )  , we consider t he  following %utonamous f .mctional-  

We say x(cp) i s  a so lu t ion  of (1) with i n i t i a l  condition Cp in CH a t  

t = 0 i f  t h e r e  i s  an A > 0 such tha t  x(p) i s  a function from [ - r ,  A} intc 

for 0 < t < A, xo(q?) = Q) and x(cp)(t) sa t i s -  E" such t h a t  xt(cp) i s  i n  CH - 
f i e s  (1) f o r  0 < t < A. - 

I n  a mannerA &;;f; analogous t o  tha t  us:d f o r  o r d  nary d i f f e r e n t i a l  eqJati.ons? 

one can prove the  following resul ts :  If )((p) i s  contiriwus i n  CH, ther, f x  

any Q i n  C t he re  i s  a solution of (1) with i n i t i a l  condition Cp a t  t = i. 

If f ( c p )  i s  l o c a l l y  Lipschitzian i n  Cp then the re  i s  only one solutio= with 
" 

i n i t i a l  condition cp a t  t = 0 and t h e  so lu t ion  x(rp) depends continucusly 
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upon 9. Also, f ( c p )  l oca l ly  Lipschitzian i n  cp (or an even weaker hypotheses h 

t h a t  f maps bounded s e t s  i n t o  bounded s e t s )  implies the  solutions can be 

extended i n  C until the  boundary of CH i s  reached. 

It i s  clear t h a t  t he  d i f fe ren t ia l -d i f fe rence  equa t i sn  discussed before 

However, system (1) i s  much more general and, i n  i s  a spec ia l  case of (1). 

par t i cu la r ,  could be of the  form 

0 

-r f (x t )  E F(J x ( t  + 6)de). 

If f(0)  = 0 ,  then the solution x = 0 of (1) i s  said t o  be s tab le  if 

for every f > 0, there  i s  a 6 > 0 such t h a t  IlcpII < 6 implies x,(cp) e x i s t s  

for t - > 0, i s  i n  (+ and ~~xt(cp)~l < E f o r  a l l  t > 0. If, i n  addition, t he re  

i s  an H1 C H such t h a t  IICpII < HI implies xt(Cp) i s  i n  CH for t - > 0 and 

xt(cp) 4 0  ea t --*", then t h e  solution x = 0 i s  said t o  be asymptotically 

st able. . 
If V is  a continuous 6calar function on CHI we def ine V(,)(cp) by the  

following r e l a t i o n  

2. 

consider sane e t a b i l i t y  and i n s t a b i l i t y  theorems f o r  autonomous systems (1) along 

t he  l i n e s  of some results of LaSalle [ 2 ]  on ordinary d i f f e r e n t i a l  equations. 

Suf f ic ien t  conditions f o r  stability and i n s t ab i l i t y .  In t h i s  section, we - - 

Part of t h i s  sect ion appeared i n  a paper by Hale [3]. 

We w i l l  S l w e y s  suppose t h a t  the function f(9) i n  (1) is  continuous and 

locally Lipschitzian on CH. When H = m, then CH = C and we w i l l  be speak- 

ing  of global stability( 4, = -), 
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Prr any E < H, there i s  a constant L such that 1 f(q)[ 5 L fc; e l l  1 - 
3 with ijql( H ~ .  Frm tkiis, one easily obtains the  following results 

Lema 1. if X(T) is a solut ion of systern (1) with i n i t i a l  function Q a t  

j, deficed on [-r, 0 )  and ~ ~ x t ( T ) ~ ~  H1 C Ii f o r  a i l  t i n  [O,  a), t hen  

t k e  family of f m c t i o n e  [ x t ( ~ ) ,  t 2 01 belongs tc a cmpac t  subset cf C; 

th&.;. I s ,  the motim tkirough cp belongs t o  6 cmpsct  subset of C. 

- 

Fros  t h i s  lema, we obtain 



+ m  as t n '  tn  If @ belongs t o  R ( V ) ,  then tkere  e x i s t s  a seqiience 

n such t h a t  ( \xt  :%'\ - 41 + O  as n -+ m. For any in teger  T i ,  there  

e x i s t s  a subsequence of t he  which we keep w i t h  the  same designat ion,  and 

a funct ion g,(q) defined such t h a t  iixt + T ( q j )  - gT($)il -+0 as 

n - - )my uniformly f o r  T i n  [-N,  N]. By t h e  diagonalization process, m e  can 

choose t h e  tn so t h a t  I!x, + (9) -g,(cp)II + o as n + Q) mifo r rn l j  ~n all 

compact subsets  of (-m, m). In  par t icu lar ,  t he  sequence x 

A a funct ion g,(Cp) M ( , L) 

n 

tn, p, -hf575hl 

A- n 

7 

(9) 6ef ines  

It i s  easy t o  see t h a t  g,(Cp) satisfies (1). 

tn + T +& - Obcz <-' 

Since go(cp) = ?Ir, it follows t h a t  t h e  solut ion xt(@) of (1) with i n i t i a l  

value df a t  0 i s  defined f o r  a l l  values of t i n  (--, m) and, furthermore, 

i s  i n  R ( r p ) ,  s ince IIxtn + (Cp) - xt(@)/ + C  as n + m  f o r  any f ixed t. 

This shows t h a t  R(cp) i s  invariant.  It i s  c l ea r  t h a t  R ( q )  i s  connected. 

To show O(Cp) i s  closed, suppose df i n  R ( r p )  appraac&s@ as n +=. n 

n There e x i s t s  m increasing sequence of t = tn( Wn)+ as n + such t h a t  

Ilxt,(cP) - $g 4 0  as n +m. Given any E > 0, choose n so l a rge  t h a t  

I{", - #(I < ~ / 2  and IIx (Cp) - VAl < ~ / 2 .  Then IIx (9 )  - < E f o r  n 
tn tn 

l a r g e  enough which shows t h a t  @ i s  i n  R(Cp) and R(T) i s  closed. Bu t ,  

c l e a r l y  R(cp) c S and s ince S i s  compact, it foli3ws t h a t  R(Cp) i s  compact. 

To show t h e  last  asser t ion  of t h e  lemma, suppose t h a t  t he re  i s  an increas-  

ing  sequence of t -+ 00 as n + O D  and an cx > 0 such t h a t  IIx (9 )  - 412 a 

f o r  a l l  dr i n  Q ( 9 ) .  Since x (T) belongs t o  a compact subset of C t h e r e  

e x i s t s  a subsequence which converges t o  an element @ i n  C and thus  dr 

t n n 

tn 

i s  i n  n(cp). This i s  a contradict ion of t h e  above inequal i ty  and completes 

t h e  proof of t h e  lemma. 

Renark. 

continuous i n  t, cp and t h a t  x ( q )  belonged t o  a compact subset of C. 

Therefore, t he  Lipschitz condition of 

implies I f(Cp)/ s L f o r  some L. 

I n  t h e  proof of 4Ae Lemma 2, we only used the  f a c t  t h a t  xt(Cp) w a s  

t 
f could have been replaced by IlqIllS H1 < 'F 
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Theorem 1. 

t h e  region where V(V) < I ,  suppose there e x i s t s  a nonnegative constant K such 

t h a t  I q ( O ) (  S K, V ( V )  L 0, and If R i s  t h e  set 

(9) = 0 and M i s  t h e  l a rges t  invar ian t  set i n  of a l l  poin ts  i n  Uf where 9 

R, then every solut ion of (1) with i n i t i a l  value i n  Uf approaches M as t + 01. 

Let V be a continuous scalar  function on CH. If Uf designates 

( c p )  ?; 0 f o r  a l l  cp i n  Uf. 

(%I) 

The conditions Iq(0)l 6 K, V(9) 2 - 0 of t h i s  theorem can be replaced by 

t h e  condition t h a t  t h e  region where V(Cp) < I i s  compact, but  t h e  theorem as stated 

i s  more convenient i n  t h e  applications. Theorem 1 together  w i t h  Theorem 3 below 

general ize  results of LaSalle for ordinary d i f f e r e n t i a l  equations and t h e  proofs 

a r e  na tu ra l  extensions of t h e  ones given by LaSalle. 

Proof: 

t and V(xt(cp)) i s  bounded below within Uf.  Hence cp i n  Uf implies xt(lp) i n  Uf 

and Ix(tp)(t)l S K f o r  a l l  t 1 0 which implies \lxt(cp)!l S K f o r  a l l  t Z 0; t h a t  

is, %(p) i s  bounded and Lemma 2 implies R ( q )  i s  an invar ian t  set. 

V(xt(lp)) has  a l i m i t  I 

U1 and 

M and Lemma 2 implies xt(cp) -B M as t 4 -, completing t h e  proof of t h e  

theor  em. 

Corollary 1. If t h e  condition. ?f Theorem 1 are s a t i s f i e d  and b(l)('p) < 0 

f o r  a l l  cp # 0 i n  Uf,  then every solution o f  (1) with i n i t i a l  value i n  Uf 

approaches 0 as t +=. 

The conditions on V imply t h a t  V(x ( c p ) )  i s  a nonincreasing function of t 

But 

< I as t +- and V = Io on R(cp). Hence Q(cp) i s  i n  
0 

= 0 on i l ( c p ) .  Consequently, S l ( c p )  invar ian t  implies R(cp) i s  i n  
(1) 

Ifotice t h a t  t h e  conditions of Corollary 1 imply f(0) = 0 and 0 i s  i n  

Theorem 2. 

continuous and increasing f o r  0 S 6 < H with u(0) = 0. 

Suppose f(0) = 0 and there e x i s t s  a function u(s)  which i s  

In  addition, assume 

there i s  a continuous sca la r  function V(tp), V ( 0 )  = 0, defined on cH Such t h a t  
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( 4 )  

f o r  a l l  q! i n  CH. Under these conditions, t he  solutior, x I 0 of (1) i s  

s table .  Furthermore, the  solution x = 0 of (1) i s  asymptotically s tab le  and 

every solut ion of (1) approaches 0 as t + O D ,  provided the  i n i t i a l  value 'p 

s a t i s f i e s  V(cp) < Lo, Lo = lim Ct(r), and the  only invariant  set i n  

v (p) = o i s  0. 

r +H 

i 1) 

Proof. There e x i s t s  a function w ( s )  continuous and nondecrezsing f o r  s 2 0 

s u f f i c i e n t l y  small, w ( 0 )  = 0, and V(cp) S w(llqII) for llrpll si l f f ic ient ly  small. 

For any E,  0 < E < H, choose 6 < E so small t h a t  4 8 )  < de). If 0 i s  

i n  c 6 ,  then v(x,(c~)) nonincreasing implies 

f o r  a l l  t - > 0. Therefore I x(cp)(t)l < E f o r  a l l  t - > 0 and, thus ,  IIxt(T)1I < E 

for t > 0. Th i s  shows t h e  solution x = 0 i s  s table .  The second pa r t  of the  

theorem i s  proved as  follows. Since u i s  increasing t h e  set Uf of Cp for  

wnich V(Cp) < I satisfies t h e  conditions of Theorem I i f  I < Io and, thus, 

by Corollary 1, every solut ion i n  UI approaches zero as t -+a. This com- 

p l e t e s  the proof. 

- 

We can now deduce t h e  following i n t e r e s t i n g  coro l la ry  of Theorem 2. This 

coro l la ry  i s  a l s o  t r u e  for nonautonmous equations and may be found i n  Krasovskii 

[l]. O f  course, t h e  proof for t h e  nonautonomous case i s  more d i f f i c u l t .  

Corollary 2. Suppose f(O) = 0, V(cp) s a t i s f i e s  condition (3) and there  

e x i s t s  a function w( s), w( s) continuous, nonnegative and nondecreasing on 

[0, H) such t h a t  
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Then t h e  solut ion x = 0 of (1) i s  stable and i f  w ( s )  < 0 f o r  s f 0, then 

it i s  asymptotically s table .  

Proof, The s t a b i l i t y  follows immediately from Theorem 2. If w ( s )  > 0 for 

6 # 0, then t h e  l a rges t  invariant set i n  t h e  set where V = 0 must be 

those solut ions of (1) f o r  which I x( t ) l  = 0 for -Q) < t < 5 t h a t  is t h e  

( 1) 

so lu t ion  x = 0. This completes the proof. 

Theorem 3, L e t  CH = C and V be a continuous sca la r  function on C. If  

V(cp) Z 0, V(,)(cp) S 0 f o r  a l l  (9 i n  C and R i s  the  set of 0 i n  C for 

which V = 0 and M is  t h e  larges invariant  set i n  R, then all 

solut ions of (1) approac M 6s t + -. buH&.i# t3o B" ( 1) 

A 

If ,  i n  addition, t he re  existfi a function u(s ) ,  nonnegative and continuous 

for 0 I 6 < Q), u(s)  +Q) as s +a, such t h a t  

f o r  all (9 i n  C, then all solutions of (1) are bounded for a l l  U 0. 

Roofs 

The boundedness property proceeds a s  follows. For any (9, i n  C y  there i s  

a constant m such t h a t  V((9) > V((9,) fo r  Icp(0)l P m. Since V(xt(Cp)) i s  

a nonincreasing function of t, it follows t h a t  I x((9)(t)l < m for a l l  t 2 0 

The first par t  of t h e  theorem proceeds e s sen t i a l ly  as i n  Theorem 1. 

which implies I(xt(q)II < m for a l l  t I 0 and t h e  theorem i s  proved. 

Corollary 3. If f (0)  = 0, a l l  of t h e  conditions of Theorem 3 are s a t i s f i e d  

< 0 f o r  Cp f 0, then a l l  solut ions of (1) approach zero + 1) and V ( 0 )  = 0, 

a s  t +-  and the or ig in  i s  globally asymptotically stable.  

We next give a theorem on i n s t a b i l i t y  of t h e  solut ion x I 0 of (1). In 

the statement of th is  result 

. 
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cH Theorem 4. Suppose V(V) i s  8 continuous bounded sca la r  function on 

and t he re  e x i s t  a r and an open set  U i n  C such t h a t  t he  following con- 

d i t i o n s  are satisfied: 
t u p l h t q l  

i) V((p> > 0 on U, V(9) = 0 on t h e  boundary of U& c, \ 
A 

ii) 0 belongs t o  t h e  cl-osure of U fl C r '  
& aL.4 

r 

iii) v(q) 5 U(J(p(o)I) on u n c ; XLC), fb) W 
*nnMIUAA&j ay Lb,  f f ) ,  U C , - . > f  

i v )  ;" ((p) 2 0 on Cf(U n C r )  and the  s e t  R of (p i n  C f ( U  fl C 1 

such tha t  V ((p) = 0 contains no invariant  set of (1) except 9 = 0. 
* *  ( 1) 

(1) 
Under these conditions, t he  solution x = 0 of (1) i s  unstable and the  

t r a j e c t o r y  of each solution of (1) with i n i t i a l  value i n  

E ,  i n  some f i n i t e  t i m e .  

U fl Cy must in t e r sec t  

Roof. 

iii) and i v )  imply t h a t  xt = xt(rpo) s a t i s f i e s  

Suppose (po E U n C y  By hypothesis i i i ) ,  l(po(0)l 2 u-'(V(O,)) and 

as long as xt E U fl C If xt leaves U n  then it must cross  the boundary, r Y' 

3ep of c r  s e i t h e r  dU o r  & but it cannot cross r-' 
! # 2 U L C y  

t buA since v = 2 V((po) > 0, t 2 0. Now, suppose t h a t  x 

aCr. Then xt belongs t o  a compact subset of Cf ( U  n C ) f o r  never reaches 

t h 0. Consequently, x approaches n((p,), t he  & l i m i t  set of (po , and 

n(q,) C Cf (U Il C :. 

r 
t 

Since V(x ) is monotone nondecreasing and bounded above, t 
it follows t h a t  V(xt) -$ c, a constant, as t -$ a, and, thus, V ( x  (e)) = 0 (1) t 

-I 
for e i n  n((po). Since @ i n  n(cpo) implies I @ ( O ) l  2 u (V((po)) > 0, t h i s  

cont rad ic t s  hypothesis ( i v ) .  Consequently, there  i s  a value of tl such that  

I x(t l ) l  = y-. Hypothesis ii) implies i n s t a b i l i t y  s ince 'po can be chosen 

a r b i t r a r i l y  c lose t o  zero. This completes the  proof of t he  theorem. 
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Remark. 

continuous function w ( s )  0 < s < H, increasing and pos i t ive  f o r  s > 0 such 

Condition ( i v )  of Theorem 4 i s  ce r t a in ly  s a t i s f i e d  i f  there  e x i s t s  a 

- 
t h a t  

* *  
0 i s  obviously 

(1) = 
I n  fact, t h e  larget invar ian t  set i n  U s a t i s fy ing  V 

empty. Theorem 4 with condition ( iv )  replaced by t h i s  type of inequal i ty  a l so  

holds f o r  nonautonomous systems. The reader can eas i ly  supply t h e  proof. 

3. Applications. The remainder of t h i s  paper i s  devoted t o  examples i l l u s t r a t i n g  

t h e  appl icat ion of these results t o  spec i f ic  equations. 

Example 1. Suppose n = 1 and 

where g(x) is a real function defined f o r  a l l  real  x, l o c a l l y  Llpschitzian 

i n  x, 1 SA euch+A& 

c(x)+ ~ ~ g ( s ) d s  --&++ + m as I XI + m, 

0 
( 6 )  

and a( t )  is continuous together with i t s  first and second der iva t ives  on 

[0, r]. We a l s o  suppose t h a t  

System (1) i s  then given by 

We wish t o  inves t iga te  along t h e  same l i n e s  as Levin and Bohel [ 4 ]  t he  

r e l a t i o n s  between t h e  solut ions of (8) and t h e  second order ordinary differen-  

t i a l  equation 
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F i r s t  of a l l ,  w e  derive the  second order func t iona l -d i f fe ren t ia l  equation 

&%w which a l l  solut ions of (8) must satisfy. If x is a solut ion of ( 6 ) ,  

then it has continuous second derivatives.  

use of (7) yields 

Different ia t ion of (8) and making 

-r 

f o r  t > 0. 

Equation (10) arises i n  

-r e 

of ( 8 )  must satisfir the equation 

the appl lcat ions i n  the  problem of t h e  s t a b i l l t y  

of a c i r cu la t ing  f u e l  nuclear reactor (see W. K. Ergen [5].  In  t h i s  case x 

represents  the  neutron denei ty  i n  t h e  reactor.  Also, t h e  eaae equation arises 

i n  some one dimensional problem In v i scoe la s t i c i ty  where x then represents  

the  s t r a i n  and a the  relaxation function. 

Suppose y ( t )  i s  any continuous function defined on (-m, m). I n  t h e  

followlng, we shall be in te res ted  i n  such functions y ( t )  which s a t i r f y  the 

addi t iona l  conditions: 

0 

(12 - a) if &(r) + 0, then I g ( y ( t  + @))de = 0; f o r  -QD < t < QD 

-r 
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0 
(11 - b) i f  *&(s) f 0 for some s i n  [0, r], then J g ( y ( t  + 6))de = 0 

- s  

for -OD < t < 00. 

We s h a l l  say t h a t  R(T),  t he  - l i m i t  s e t  of‘ an o r b i t  of (8) t h r u  c p ,  is t he  

union of o rb i t s  of solut ions o f  ( 9 )  which s a t i s f y  (11) i f  n(V) i:: t h e  -xiion 

of sets of t h e  form U ut(O, B ) ,  where u(a ,  B)( t )  i s  a ~ ~ ! : i f I o n  of (9)  

defined f o r  - < t < -, u(0, 8)(0) = a, h(a, B)(O) = 8 and u ( a ,  e’(t)  
- oD<t<m 

s a t i s f i e s  (11). 

Notice t h a t  any solut ion of (9) which s a t i s f i e s  (11) a lso  s a t i s f i e s  (10). 

Not a l l  solut ions of (10) are so lu t ions  of (8). I n  f a c t ,  in tegra t ion  of 

(10) from 0 t o  t y i e l d s  

t 0 

t-r -r 
(W k ( t )  - x(O+)= - I a ( t  - u)g(x(u))du + a(-@)g(x(u))du, 

which i s  equivalent t o  (10). Given any i n i t i a l  funct ion cp i n  C, one must 

choose 3(0+) i n  a spec ia l  manner t o  obtain a so lu t ion  of (8). I n  f a c t ,  

k(O+) must be such t h a t  

This i s  an addi t iona l  r e s t r i c t i o n  t h a t  must be s a t i s f i e d  by t he  solut ions of 

the second order ordinary d i f f e r e n t i a l  equation (9).  

If we def ine a solut ion of (10) t o  be a function which i s  continuous to- 

gether with i t s  f irst  der iva t ive ,  then a solut ion 

6; a t  t = 0 i s  such t h a t  jC(O+) = 6 ( 0 - )  and any solut ion of (10) i s  a 

x w i t h  i n i t i a l  function 

so lu t ion  of t h e  system 

0 

$(t) = - J a( -e )g(x( t  + e))de + c 
-r 

where C i s  given by 
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and CF is  the  i n i t i a l  function for x. Therefore, any statement about t he  

so lu t ions  of (8) i s  a s ta tement  about t he  solut ions of (10) provided the  i n i -  

t i a l  function s a t i s f i e s  conditions which ensure t h a t  C = 0. Notice t h a t  any 

constant funct ion i s  a solut ion of (10) and t h i s  i s  not t he  case f o r  (8). 

Lr te r ,  we w i l l  d iscuss  some =ore specif ic  r e l a t ions  between (8) and (10) under 

more r e s t r i c t i v e  conditions on the  funct ion g. 

Theorem 3. If system (8) s a t i s f i e s  conditions (6) and (7),  then every soh- 

t i o n  of  (8) is bounded and t h e  o - l i m i t  set of any solut ion of (8) i s  t h e  union,* 

of o r b i t s  of so lu t ions  of ( 9 )  which s a t i s f y  (11). 

a c L B * d & ,  

Roof: 

If M ic~& -q C d y )  &+ 

We use t h e  same Lyapunov funct ional  introduced by Levin and Nohel [ 4 ] .  

* ,  

then 

by t h e  hypothesis (7). 

Theorem 3 are s a t i s f i e d  and, thus,  every solut ion of (8) is bounded and must 

approach t h e  largest invar ian t  set of  (8) i n  t h e  set where V = 0. It 

i s  c l e a r  t h a t  t h i s  l a t t e r  set R consis ts  of a l l  those cp i n  C f o r  which 

The hypotheses also imply t h a t  t h e  conditions of 

( 8 )  

0 
I g(cp(e))de = o if h(r) # o 
-r 

lo g(cp(8))de = 0 for any s i n  [O, r] for which X ( s )  # 0. 
-S 
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But  a l l  so lu t ions  of (8) s a t i s f y  (10) and any so lu t ion  i n  an o r l i m i t  

must be defined on (--, OD) and s a t i s f y  (14) for a l l  t i n  ( -m,  m). 

Fina l ly  t h i s  implies these  solutions must s a t i s f y  (9) amd (ll), completing 

s e t  

t h e  proof of t he  theorem. 

Two questions now present themselves i n  a n a t u r a l  manner: i) What 

are t h e  possible  so lu t ions  of (9) which s a t i s f y  ( l l ) ?  

d i t i o n s  on a ( t )  and g(x) w i l l  ensure t h a t  R(p) i s  generated by only one 

What addi t iona l  con- 

solu+ion of (g)? 

these  questions. 

We now give some p a r t i a l  r e s u l t s  i n  an attempt t o  answer 

Corollary 4. 

s i n  [C, r] such t h a t  ;( s) > 0, then (8) has no nonconstant per iodic  

If system (8) s a t i s f i e s  conditions (6) and (7) and t h e r e  i s  an 

solut ions.  

Proof: There exist  so < s1 such t h a t  %(s) > 0 for so S s S sl. If 

(8) has a per iodic  so lu t ion  x t ( q )  then n(cp) = Utxt(q), and Theorem 3 s t a t e s  

t h a t  it must be generated by a nonconstant per iodic  so lu t ion  

period p of (9) sa t i s fy ing  (11 . b) for so < s < s But in tegra t ion  of 

( 9 )  y i e l d s  

u ( t )  of l e a s t  

1' 

0 
t ( t )  - t(t - s) = -a(O) I g ( u ( t  + 6))de  = 0, 

-6 

which implies h ( t )  i s  per iodic  of period s for s < s < sl. But t h i s  i s  

impossible s ince  h(t) i s  periodic of period p. This proves t h e  corol lary.  

0 

Corollary 5. If system (8) s a t i s f i e s  conditions ( 6 ) ,  ( 7 ) ,  xg(x) > o for  

x { 0 and the re  i s  an s i n  [0, r] such t h a t  Z(s) > 0, then the  solut ion 

x = 0 of (8) i s  global ly  asymptotically stable. 

Proof: The condition X(s) > 0 for some s implies a(0)  > 0 and t h i s  to- 

gether with t h e  conditions on g(x) imply t h a t  every solut ion of (9) i s  
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periodic  and the  only constant solution is  iero.  Theorem > and Corollary 2 

imply the  conclusions of t he  theorem. 

Corollary 3 i s  e s sen t i a l ly  the  same as the  one of Levin and Nohel C43. 

Corollary > i s  a statement of global asymptotic s t a b i l i t y  of  the  solu- 

t i o n  x = 0 of (8). Can we use th i s  result t o  d r a w  any conclusions about the 

solut ions of (lo)? Any constant function s a t i s f i e s  (10) and one would suspect 

t h a t  any solut ion of (10) approaches a constant as t + m. This seems rather 

d i f f i c u l t  t o  prove i n  the  general  case, but we can prove t h e  following simple 

r e s u l t  f r a m  Corollary 3. If f o r  any real constant b, t he re  e x i s t s  a r e a l  

6 such t h a t  

satisfies t h e  condition 

where g(y) satisfies t h e  conditions of coro l la ry  4, then f o r  a given solut ion 

x of (lo), there  i s  a constant a such t h a t  x --* a as t + O D .  I n  f a c t ,  i f  

t h e  solut ions of (10) 8;Fc required t o  have continuous f irst  der iva t ives  as s ta ted  

i n  t h e  remarks preceding Theorem 5 ,  then t h e  system (10) i s  equivalent t o  t h e  

system 

and (p i s  the  i n i t i a l  value of t h e  solut ion x under investigation. If we 

l e t  b = c/6, 6 be defined as above and x = y + 6, then y s a t i s f i e s  (8) 

with some appropriate i n i t i a l  values and approaches zero by Corollary 5. Thus, 

we have proved t h e  above r e su l t .  
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There a r e  many functions g(x)  which w i l l b e  such t h a t  h(y)  satisfjes 

the above conditions. In  f a c t ,  i f  xg(x) > 0 f o r  x f 0, I g(x)l -B OJ wjth 

I xi , g’(x) > 0 f o r  a l l  x, then t h i s  i s  true.  In  pa r t i cu la r ,  t h e  funct ions 

g(x) = ex - 1, g(x) = x, e tc .  satisf‘y these conditions. 

Now, l e t  us consider a more par t icu lar  case and inves t iga t e  t h e  poss ib le  

alimit sets of (8). Let a(0) = 1 and 

(15) g(x) = - x + 2.  

Suppose t he re  are so < s1 such t h a t  X(s) > 0, so 5 s 6 sl. The condi t iom 

of Theorem 5 and Corollary 4 are s a t i s f i e d  and t h e  &limit set of any solu- 

t i o n  of (8) with g(x) given by (15) must s a t i s f y  

.. x - x + a = o  

0 
1 g(x(t  + e))de = o f o r  all s i n  [so, sl] 
-6 

The phase p o r t r a i t  of t h e  so lu t ions  of (16) i s  e a s i l y  shown t o  be as i n  Fig. 1. 

By Corollary 4, t h e  only poss ib le  candidates f o r  an Q ( 9 )  of (8) a r e  shown 

i n  Fig. 2. Now t h e  curves ClS C2 are determined by so lu t ions  u,(t) > 0, 

%(t) < 0, -OD < t < 00, respectively.  But t h e r e  i s  8 T such t h a t  0 < u l ( t )  < 1, 

-1 < %(t) < 0, for t h T and, thus, for any s f 0 

This  shows that u , ( t ) ,  %(t) cannot have o r b i t s  which belong t o  an Q(cp).  

Consequently, t h e  & l i m i t  set of any so lu t ion  of (8) with g s a t i s f y i n g  (15) 

must be me of t h e  t h r e e  constant functions -1, 0, 1. 

For t h i s  same p a r t i c u l a r  example l e t  us analyze t h e  s t a b i l i t y  proper t ies  

G f  each of t h e  constant so lu t ions  -1, 0, 1. If a i s  e i t h e r  of t hese  so lu t ions ,  



Fig. 1 

x 

X 
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t he  l i n e a r  va r i a t iona l  equations r e l a t i v e  t o  a axe 

t- r 

If the  so lu t ion  y = 0 i s  asymptotically s t a b l e  or unstable then it follows 

from r e s u l t s  of s t a b i l i t y  theory t h a t  - the same i s  t r u e  f o r  t h e  complete 

v a r i a t i o n a l  equations. For a = + 1, Corollary 5 implies t h e  so lu t ion  

y = 0 

- 
of (17) i s  asymptotically stable and using t h e  negative of the  V-func- 

t i o n a l  employed i n  t h e  proof of Theorem 5 and applying Theorem 

t h a t  f o r  CY = 0, t h e  so lu t ion  y = 0 of (17) is unstable. Consequently, any 

nonconstant so lu t ion  of (8) with g s a t i s f y i n g  (15) approaches e i t h e r  +1 or 

4, one f inds  

-1 9s t +=. 

It should be c l ea r  t h e  par t icu lar  form g(x) given i n  (15) i s  not at a l l  

e s s e n t i a l  for t h e  above type  of results and one could have a function 

With many zeros on t h e  axis. 

g(x) 

If .6( s) = 0 f o r  a l l  s then t h e  behavior of so lu t ions  of (8) may be 

The following r e s u l t  ind ica t ing  t h i s  f a c t  i s  due t o  Levin nore complicated. 

and Nohel [4]. The proof of t h e  theorem is e s s e n t i a l l y  t h e  same as i n  [4]. 

Theorem 6 .  If system (8) satisfies ( 6 ) ,  ( 7 ) ,  and a ( s )  = (r - s)/r, 0 5 s 6 r, 

xg(x) > 0 for x # 0, then every solut ion of (8) i s  bounded and t he  s l i m i t  

s e t  of any so lu t ion  of (8) cons i s t s  of t h e  o r b i t  of some solu t ion  of (9) 

which s a t i s f i e s  t h e  condition 

u ( t )  

0 

I g ( u ( t  + e))ae = 0, -- c t < 0. 
-r 

I n  t h i s  case, u ( t )  must be periodic of some period p and t h e r e  must be an 

i n t e g e r ,  m such t h a t  mp = r. If + g(u) = 0 and mp = r then u s a t i s f i e s  

!8) 
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Remark. If the  only solution of (9) which 

x ( t )  = 0 for all t, t h e  zero solution of 

satisfies (la) i s  the  solut ion 

(8) is  glcbal ly  asymptotically 
- h 

L c 
stable .  I n  pa r t i cu la r ,  t h i s  i s  true i f  g(x) = a x, u > 0, and r f G 

(mod &/a). If r I 0 (mod .&/a) and g(x) = u x, then every periodic solu- 

t i o n  of (9) i s  a periodic solut ion of (8). 

proof t h a t  g(0) = 0 and (6) implies the  zero solut ion of (8) i s  uniformly 

stable. 

2 

Also,  it w i l l  be c l ea r  from t h e  

F’roof of Theorem 6. From Theorem 5 ,  O(cp) must be t h e  union of o r b i t s  of 

solut ions of (9) which s a t i s f y  (18) s ince a(s) = 0 f o r  a l l  6. All solut ions 

of (9) are periodic and it i s  easy t o  see t h a t  (18) implies t h e  periods must 

s a t i s f y  the  property s ta ted  i n  t h e  theorem. We now analyze t h e  detai led s t ruc-  

ture of n(cp). L e t  R ( q )  be t h e  w-l imit  set of an element cp i n  C obtained 

by moving along t r a j e c t o r i e s  of (8). Choose V as t h e  function used i n  t h e  

proof of Theorem 5 except w i t h  M = 0. Since n(p) i s  invariant ,  V(xt($)) 

i s  constant for td(cp), < t < 0. TJerefore, v(xt(#)) = o for f E Q ( q )  

if and only i f  ~ ( r p )  = (0).  ow suppose o 1 n(cp). Then v(x,(*)) = v > o 
f o r  E O ( q ) ,  -- < t  < m. Furthermore, Q(q) cons is t s  of periodic solut ions 

(9) which satisq (18) and t h e  only periodic solut ions of (9) which s a t i s f y  (18) 

must have a period p( a) such tha t  m( a ) p (  a) = r for some in teger  m ( a ) .  

On t h e  other  hand, since n ( q )  i s  connected and p(a) i s  continuous, t h i s  

implies all solut ions of (9) which l i e  i n  O(p) must have t h e  same period; 

t h a t  is, mp = r, m and p independent of CL 

NOW l e t  u ( t ,  a), U(O, a) = -a < 0 ,  L(o, a) = 0 ,  o < g s a 5 ~2 
be those periodic solut ions of (9) which l i e  i n  Q ( c p ) ,  0 4 Q(cp). Then each 

u ( t ,  a), 4 d 6 a2 has t h e  same period p with mp = r f o r  some in teger  

2 ’  m and V(ut(a)) = v > 0,  g B as a -= < t < m. If we show t h a t  4 = a*, 
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t h i s  will complete the  proof of t h e  theorem. 

u ( t ,  a) = - g ( u ( t ,  a)), 

Using the  f a c t  t h a t  

we see tha t  

Since 

f o r  a l l  t, t h i s  implies 

= G(- f f )  + I O 2  6 (T, a)dT. 
-P 2p 

The latter r e l a t i o n  follows because 6 i s  periodic of period p = r/m. Further- 

more, from t h e  symmetry of t h e  curves defined by u ( t ,  a), b ( t ,  a) l n  the  u , t  

plene, it follows t h a t  

where @(a) > 0 

From t he  propert ies  of g, it follows t h a t  V(ut(a)) is a s t r i c t l y  increasing 

function of a and t h i s  i e  a contradiction unless a1 = 5 .  

is  defined as the  unique pos i t ive  nuuiber such t h a t  G(-a )  = G ( B ( a ) ) .  

To prove the  l a s t  asser t ion  of t h e  theorem, note t h a t  

3 du = G ( t )  t t L -  ( t  - u) 
L L-(t-u) g(x(u))du = I 

t-r L -I 
t-r 
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from an in tegra t ion  by p a r t s  and the per iodici ty .  

of Theorem 6. 

This  completes t h e  proof 

Can we use t h i s  result t o  draw some conclusions about system (lo)? L e t  

us  suppose g(x) i s  such t h a t  1 g(x)l -+ with I XI and fo r  any r e a l  con- 

s t a n t  b there  i s  a 6 such tha t  

- - .---- 

s a t i s f i e s  yh(y) > 0 for y # 0, then using t h e  same argument as t h a t  after 

Corollary 4, t h e  transformation x = y + 6 where g(6) = C/r, r = I a(O)dQ, 
0 

0 
C = G ( 0 )  + f a(-e)y(e)de, y ie lds  t h e  equation 

-r 
0 

$( t )  = a(-e)h(y( t  + e))de.  

-r 

The function h 

m - l i m i t  set of any solut ion consists of an o r b i t  of 

satisfies t h e  conditions of Theorem 6 and therefore ,  t h e  

generated by a periodic solut ion of period p with mp = r f o r  some integer  

m. Therefore, every solut ion of (10) i s  asymptotic t o  a constant plus  a 

per iodic  solut ion f o r  large values of  t. 

a 

Using t h e  same V funct ional  as i n  t h e  proof of Theorem 5 and assuming 

t h a t  g(x), a ( t )  satisf?y t h e  conditions ( 6 ) ,  (7), and i n  addi t ion F(x) i s  

any continuous function of x which i s  l o c a l l y  Lipschitzian i n  x, and 

satisfies 

one shows t h a t  the zero solut ion of t h e  equation 

t 
% ( t )  = F ( x ( t ) )  - I a ( t  - T)g(x(u))du 

t-r 
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i s  g loba l ly  asymptotically s tab le .  

Example 2. (Volterra,  161. ) Consider t h e  equation 

r 
( 19) A R ( t )  + Bx(t) = jo F(B)x(t - e)de 

where A, B, F are symmetric matrices, F i s  continuously d i f f e ren t i ab le  and 

r 
(20) A > 0, F(B) h 0, ;(e) d 0, 0 L 8 d r, #EfB - Io F(B)dO - > 0. 

With M defined as above and %(t) = y ( t ) ,  we can r ewr i t e  (1.9) as 

System (ab) i s  more general than (19) and for  (21) t o  be equivalent t o  (19 )  

t h e  i n i t i a l  condi t ions for (21) must be chosen i n  a spec ia l  manner. 

we a r e  going t o  d iscuss  t h e  more general system (21). 

However, 

Following Volterra  [6], 

we def ine  V(q, 3') as 

Then 

1 r 
= y'(t)l F(e)[x( t -e)-x( t ) ]de - 5 [ x ( t - r )  - x( t ) ]nF( r ) [x ( t - r )  - x ( t ) ]  

0 

t t 
[ X( u)-x( t ) ]*F(  t - ~ ) [  x ( u ) - x ( ~ ) ] ~ u  - 

t-r t-r 

1 
+ p I 7' ( t )F (  t -u)[  X(  u)-X( t ) ] d u  
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Consequently, 

Theorem 7. (Volterra  [ 6 ] ) .  If A >0, M >0, and there  is a 
0 

e 

i n  [0, r] such t h a t  F(Bo) < 0 ,  then every solut ion of (21) approaches zero 

as t + O D ,  

Remark. 

s ince he assumed F( r )  = 0, F(8) < O  f o r  a l l  8 i n  [0, r] and only shared 

This theorem i s  ac tua l ly  a general izat ion of t he  result of Volterra,  

t h a t  all solut ions of (21) were bounded and t h e r e  were no constant or periodic  

solut ions.  O f  course, these  conclusions are enough t o  imply t h a t  a l l  solut ions 

approach zero as  t +=. 

hoof  of Theorem 7. Since F(eO) < 0, t h e r e  exist el < Q2 such t h a t  F(B) < 0 

f o r  a l l  8 f o r  which F(e) c0; i n  pa r t i cu la r ,  f o r  8 5 8 5 02. For a s o h -  1 -  

of (21) ' yt  t i o n  xt 

V = 0, we must have 

t o  belong t o  t h e  l a rges t  invar ian t  set i n  the  s e t  where 

2' x ( t  - e )  = x( t )  for a n  t i n  (-m, a) and el s e I e 
Consequently xt must be a constant funct ion which implies yt = 0, which i n  

t u r n  implies b ( t )  = 0 and M > 0 implies  x ( t )  = 0 for all t. Thus, t h e  

l a r g e s t  invar ian t  set of (21) i n  the  set where V(21) ( c p ,  3') = 0 i s  ( 0 ,  0 ) .  

Since V satisfies t h e  conditions of Theorem 2, t h e  o r ig in  i s  asymptotically 

stable. This completes t h e  proof of t h e  theorem. 

Theorem 8. If A > 0, M > 0, F(B) = 0, F > 0, 0 < 8 < r, then a l l  sclu- - -  
t ims of (21) are bounded and the u j - l i m i t  set of any solut ion of (21) must Se 



generated by periodic so lu t ions  O f  period r of  t h e  system 

we see t h a t  t h e  s e t  where V = 0 
(21) 

Proof: Using r e l a t i o n  (23) f o r  V 

c-nsists p rec ise ly  of those i n i t i a l  functions f o r  which 

sequently f o r  a solution t o  belong t o  t h e  s e t  where 'J = 0 

cp(-r) = ( ~ ( 0 ) .  Con- 

it must be per iodic  

of period r. But any non t r iv i a l  periodic solution of a linear equation with 

constant coe f f i c i en t s  has zero average over t he  period and it follows t h a t  t h e  

l a r g e s t  invaxiant set i n  tk set where V = G must be periodic solut ions of 

period r which s a t i s f y  (24). The conditions of Theorem 2 are s a t i s f i e d  and 

t h e  theorem is proved. 

I n  t h e  case where x is  a scalar, it i s  easy t o  show t h a t  t h e  u p l i m i t  

set of any solut ion of (21) sa t i s fy ing  t h e  conditions of Theorem 8 i s  generated 

by a t  most one solut ion of (24). 

We now prove t h e  following i n s t a b i l i t y  theorem for t h e  case where M < 0. 

Theorem 9. If A > 0 ,  M < 0 ,  o < e < r ,  - -  
and t he re  i s  a eo i n  [O, r] such t h a t  F(Bo) < 0, then t h e  solut ion x = 0 ,  

y = o of (21) i s  unstable. 

' *  
satisfies (23). The sane 

(21) 
Proof: If V i s  chosen as i n  (22), then V 

argument as given i n  t h e  proof of Theorem 7 shows t h a t  t h e  l a rges t  invar ian t  
' i t  

set of (21) i n  t h e  s e t  where V(21) = 0 i s  (0, 0).  Furthermore, V(Q, '707 < 3 

i f  and only i f  



The set U of W,@ sa t i s fy ing  t h i s  r e l a t ion  i s  c.crt.air:ly opvn w,ri 0 b e l o r  K 

t’ t h e  boundary of LJ. The i - c v i d i t i L n s  of T>.rcrem 4 .rre :,atis:’iv>: arij zriy s r l  ,- 

t i o n  of (21) with i n i t i a l  values ( 9 ,  $ )  f (0, Q ) ,  (Cp, $ 1  

i -\ tA# y . M . t ’ , c  - v 
h 

i n  TI must apprcla r. 

i n f in i ty ,  completing the Frovf  of the theorem. 

Example 3. ( I r , t e r a c t i m  of species, Volterra  [ T I ) .  in [7], Veiterra has lis- 

,*usbed t h e  following model f o r  t h e  i n t e r a c t i m  of two species. 

be t h e  numbers of species c f  t,ype A, B respec t ive ly ,  a t  t im  t,. Speci6.s A 

L e t  N l ( t ) ,  “: ( t i  

h a s  ar, un l i a i t ed  f3od supply and spezies B r e l i e s  upon A fcr his d e v ~ l c p r ? x ~ Z .  

Fcir pos i t i ve  constants r, E r.., j = 1, 2, and nurd-egatlve fur.stior,s 

F1(f?), F2 (8 ) ,  0 < 8 < r ,  t h e  species are  assuned t o  evolve accor4ing t o  

the r e l a t i o n s  

3’ 
- -  

I n  t h e  c l a s s i c a l  model of t h e  in te rac t ion  of A an3 E, t h e  flmctinns Fly 

are zero. The add i t iona l  terms involving Fl(6), F2(@! allow f o r  mcrf 

i n t e r a c t i c n  between t h e  species A and B. For t h e  simple modei it i s  well 

F2 

known t h a t  a l l  so lu t ions  af ( 2 3 )  with N1 > 0, N, > C a re  periTdic and  i n - l r - i t .  
C- 

an equilibrium poin t  i n  t h e  

general  system (25) has a.r~ a8ynntotically s t a b l e  e q u i l i b r i m  point undpr very  

(N1, N2) - plane. AS w e  w i l l  see  below, the  mw-e 

general  assumptions on F1’ Fz* 

The equilibrium p c l n t ~  of ( 2 5 )  are ( 0 ,  2)  a rd  (KI, K2), Y1 = ~ 4 y -  + r ’4 - 
rr K2 = fl/frl + rl), r = 1 F‘.(O)d6, j = 1, 2. The point ( 0 ,  3 )  is f -hv .  ,z!) 

unstable. We wish now t o  analyze %he behavior of t h e  so lu t ions  of  ( 7 5 )  I!: a 

j c , J  

neiaborhood of t h e  equilibrium point 

N2 = K2 (1 + y ) ,  

(K1, K?). If w e  l e t  N 1  = E, (1 + x )  , 

then w e  obtain the l i n e a r  v a r i a t i o n a l  equations 



c 

. 

0 

r 
i ( t )  = q x ( t )  + 1 F(B)[x(t - e) - x( t ) ]de  

0 

r r 
F - K F  >O, q = rzK1 + I F(e)de, G = v1 2 0, 1 2 -  where p = rl$ + G(B)de, 

and w e  make t h e  assumption t h a t  
0 0 

p > 0, q > 0. If w e  can show that system (26) 

i s  asymptotically s table ,  then t h e  equilibrium point  (ICl, K2) of (25) i s  

asymptotically stable. Notice that  (26) i s  a general izat ion of t h e  Scalar 

version of (21). I n  f a c t ,  w e  obtain (21) by pu t t ing  G = 0 and replacing y 

by -Y- 

Theorem u). If p > o, q > o, F (e) LO, ~ ( 6 )  2 o, i(e) - < o, b ( e )  5 o, 

0 < 8 < r, and t he re  i s  a eo i n  [0, r] such t h a t  either F(Bo) C 0 or - -  
$eo) < 0 ,  then every so lu t ion  of (26) approache6 zero as t + OD. 

Roof: Define 

2 r 
F(B)[x(t - 6) - x ( t ) ]  de. 

0 
+ ' 2  

It follows t h a t  - 

2 r .  1 + F(B)[x(t - 6) - x ( t ) ]  dB - < 0. 
0 

Therefore all so lu t ions  of (26) are bounded. If there is a eo i n  [0, r] 

such tha t  F(eo) < 0, then xt i n  the  l a r g e s t  invar ian t  set i n  t h e  s e t  where 

v = o must s a t i s f y  x ( t  - 6) - x ( t )  = o f o r  6 i n  an i n t e r v a l  containing eo. 
Consequently, x = c a constant and t h e  d i f f e r e n t i a l  equation implies x = 0, Y = 0. 



Therefore, Theorem 2 implies every solut ion approaches zero as t --. The 

o ther  case i s  t r ea t ed  i n  exact ly  the same manner and the  theorem i s  proved. 

One could obviously generalize t h i s  example t o  a system of equations of 

a spec ia l  type. 

Example 4. Let us consider a special  nonlinear version of equation (19); 

namely, t h e  second order system 

where h(x) ,  g(x) are continuous functions of x such t h a t  xh(x) > 0, 

xg(x) > 0 i f  x # 0 and 

X 
H(x)'lzf h (s )ds  +ea' as 1x1 +a. 

0 
X 

If G(x) = J g(s)ds and 
0 

one e a s i l y  obtains  

r .  
V (x  , yt) = - F(r)G[x(t - r) - x ( t ) ]  + I, F(d)G[x(t  - 9 )  - x ' t , ! ! j @ .  (27) t 

If we suppose F(8) - > 0 for a l l  8 and t he re  i s  a eo such t h a t  F(eO) < 0, 

then, as i n  the  previous example 2, one shows t h a t  every solut ion of ( 2 7 )  ap- 

proaches zero as t + ea. If F(6) = 0, 0 - -  < 8 < r and F(r )  > 0, then every 

so lu t ion  of (27) i s  bounded and t h e  & l i m i t  set of any solut ion of (27) must  

cons is t  of per iodic  solut ions of 

k = y  

$ = -h(x) 
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of period r. If there  are no periodic solut ions of (28) of period r except 

t he  so lu t ion  (0, 0), then every solution of (27) approaches zero. 

Example 3. (Krasovskii, [ 1, p. 1731) Consider t he  equation 

where 

f (x) /x  > b > 0, g(x)/x > a > 0, Ih(x)l < L, r < b/L, 

for a l l  x. If h(x)  = dg(x)/dx, system (29) is r e l a t ed  t o  a second order 

d i f fe ren t ia l -d i f fe rence  equation. For any scalar functions cp,s defined and 

continuous on [-r, 01, define 

X 
where C(x) = g(s)ds  and V is a pos i t ive  constant t o  be determined. 

0 
A d i r e c t  canputation shows that  

If r < b/L, then one can always f ind a pos i t i ve  V f o r  which the  i n t e g r a 3  

is pos i t i ve  d e f i n i t e  i n  $ ( O ) ,  *(e) which implies V (cp ,  *) = 0 i f  and 

only i f  e I 0. 

(9, t) for  which * = 0 is (0, 0). Consequently, t he  above theorems may be 

applied t o  obtain t h e  results that t h e  solut ion 

asymptotically stable and if ,  i n  addition G(x) + as 1 XI 4 a, this solu- 

(29) 
But, the  only invariant  set cf (29) which l i e s  i n  t he  set of 

x = 0, y = 0 of (29) is 

t i o n  is global ly  asymptotically stable.  
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Example 6. Consider equation (29) with  

- f (x) /x  > b > 0, g(x)/x > e > 0, I h (x){ < L, r < b/L, 

and l e t  

A 

where C(x) = ,/ g(s)ds and v is a pos i t ive  constant t o  be determined. 
0 

A direct computation shows t h a t  

0 

2b 
r for  some convenient V > 0 (and i n  fact,  an^ v <-) i f  r < b/L 

;" (cp ,  #) t 0 i f  and only if f = 0. But, t h e  only invar ian t  set 
(29) 

and 

of (29) 

f o r  which # = 0 is  rp = 0. Since V satisfies the  conditions of Theorem 

4 , the or ig in  i s  unstable. 
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2 2  2 For any r, 0 < r <  1, if y < r < 3, then - f (y)  y > F (1 - r )  > 0. 

Consequently, from Theorem 4 and the ccmputation i n  the above example, it 

follows t h a t  t he  solut ion x = 0 o f  (30) i s  unstable i f  r < E (1 - r ).  

The region U where V > 0 consis ts  of a l l  9, @ f o r  which 

2 

where V > 0 can be chosen as small as we l i k e  wi th  t h e  only r e s t r i c t i o n  

on v being t h a t  v < e (1 - r )/r. Theorem 4 implies t h a t  any solut ion 

of (30 )  with i n i t i a l  function ( p i  U rtCJ 

i n  a f i n i t e  time. If r = 0 t h i s  i s  t h e  same r e s u l t  as one obtains for  

ordinary d i f f e r e n t i a l  equations; namely, If equation (30) has a cycle it must 

be outside the s e t  This type of r e s u l t  s t a t e s  

t h a t  the proper t ies  of t he  type mentioned above a r e  continuous i n  

2 

must reach t h e  boundary of cJ3 3r 

U n CJ if r < E ( 1  - 3). 
3r 

r. 

Example 7. (Krasovskii 1, p. 1 0 ). Consider t h e  sca l a r  equation 

(31) % ( t )  = - s ( t )  - b x ( t  - r )  

where a > 0, b are constants. If x is a sca l a r  take  1x1 as t h e  

absolute  value of x. If 
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where p > 0 i s  t o  be determined, then 

. 
V ( X  ) = - ax 2 (t) - b x ( t ) x ( t  - r)  + clx 2 (t) - clx 2 ( t  - r)  (31) t 

and V (x ) i s  a negative d e f i n i t e  quadratic function of x ( t ) ,  x ( t  - r)  

i f  
(31) t 

Consequently, if p = a/2 and b 2 2  < a , then t h e  conditions of Corollary 2 

a re  s a t i s f i e d  Bnd the  solut ion x = 0 

( t h e  global  nature  follows from the l i n e a r i t y ) .  

of (31) i s  globally asymptotically s t ab le  

I n  t h e  aboge discussion of (31), t h e  p a r t i c u l a r  Lyapunov function used 

yielded a stability region which is independent of 

exact region of s t a b i l i t y  for (31) is  e a s i l y  computed ( see  Bellman and Cooke 

[8]) 

r and t h e  sign of b. The 

and i s  indicated i n  Fig. 3. 

Region 

Hg. 3 .  

The region 

all values of r, 0 S r 5 =. On the  other  hand, as r + O  t h e  t r u e  region 

of s t a b i l i t y  for (6.1) approaches the  half-plane 

fbl < a i s  t h e  maximum region f o r  which s t a b i l i t y  i s  assured for 

b + a > 0. 



\ 
\ 
\ 
\ 
\ 

eq ion 

a 

Fig. 3 



.* 

t a t i v e  s t ruc ture  8s t h e  t r u e  region of s t sb i l i t y?  I n  p a x t i c u l s r ,  can we use i 

a Lyapunov function t o  obtain a region of stability which approaches t h e  ha l f -  

plane b + a > O  aG r + O  ? 

We proceed as follows. L e t  CY be a constant and B ( 6 )  b e  a continuodsly 

d i f f e r e n t i a b l e  function of 8 fo r  -r S d 5 0. If 

then 

i f  

(33)  

Furthermore, 

+ &x(t  - r )x(u)  + f;(u - t)x'(u)]du. 

Consequently, if  f3 satisfies (33) and the integrand i s  pos i t ive  d e f i n i t e  

i n  x ( t ) ,  x ( t  - r) and x(u) ,  then Corollary 2 w i l l  imply t h e  uniform a s p p -  

t s t i c  s t a b i l i t y  of t h e  solut ion x = 0 of (31). The necessuy  md s u f f i c i e n t  

conditions fa t h e  integrand t o  be pos i t ive  d e f i n i t e  i n  these variables i s  t h a t  

a, f3, a, b and c s a t i s f y  t h e  following s e t  of i nequa l i t i e s t  



(34) % def +f3(-r) - f (a + b) 2 > 0 

2 def Q(e) - %b2% - b ( a  + b) + P(-r)] > 0 4 

If w e  assume t h a t  4 ’ 0, 5 > 0 then the  previous inequa l i t i e s  will 

be satisfied i f  

(35)  

Consequently, i f  for given a, b and r we can choose CY and S ( e )  so 

that r e l a t ions  (33) and (35) are sa t i s f i ed ,  then t h e  point (a,b,r) w i l l  

correspond t o  a set of t he  parameters fo r  which (31) is asymptotically stable.  

Let us check f irst  of all t o  see whether we c m  obtain the  same r e s u l t s  

as before f o r  t h e  region of s t a b i l i t y  which i s  independent of r. 

inequa l i t i e s  (33) and (35) do not depend on 

~ ( e )  > 0, &e) > 0, -r S 8 d 0, a > S(O), b < 4(a - @(O))P(-r). Suppose 

the re  is a constant q < 1 such t h a t  b < qa , a > 0. Then we can s a t i s f y  

t h e  inequa l i t i e s  i f  we choose @(e) close enough t o  4 2 ,  which y i e lds  t h e  

same result as before. 

For a = 0, 

r e x p l i c i t l y  and reduce t o  

2 

2 2 

W e  now make some ra ther  crude estimates of a, f3 t o  obtain some informa- 

t i o n  about t h a t  par t  of t he  s t a b i l i t y  region which depends on 

ta ined i n  the  region 

t o  obtain the  region of s t a b i l i t y  a6 t he  region a + b > 0 i f  r + 0. If we 

l e t  a P - b - 28(-r) [ this  maximizes 43, then our inequa l i t i e s  (33),  (35)  

r and is con- 

a + b > 0. In par t icu lar ,  we w a n t  t o  see i f  it is possible 
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w i l l  be satisfied i f  

a + b > P(0) 

W e  see from these inequal i t ies  t ha t  as r 40, the  region defined 

by (36)  w i t h  B(0)  su f f i c i en t ly  d l  approaches the region a + b > 0, 

which coincides with the  t r u e  s t a b i l i t y  region. 

inves t iga te  how w e l l  the  s t a b i l i t y  r e t i o n  of (31) can be approximated by a 

clever  choice of t h e  constant a and t h e  function f3 i n  (32). 

It would be in t e re s t ing  t o  

Example 8. Consider again t h e  equation 

% ( t )  = - ax ( t )  -bx(t - r ) ,  

where a + b < 0 and r i s  any posi t ive constant. We wish t o  prove by use 

of Lyapunov functions that the  solution x = 0 of t h i s  equation i s  unstable. 

The exact region of s t a b i l i t y  f o r t h i s  equation i s  shown i n  Fig. 3. The regioa 

a + b < 0 

a function of r. 

i s  t h e  i n t e r i o r  of t h e  in te rsec t ions  Q f  t h e  i n s t a b i l i t y  regions as 

If F i s  any given function and 

2 2 t x t  
V(xt) = ,+- - $ 1  F ( t  - u)[x(u) - x ( t ) ]  du, 

t-r 

then it i s  e a s i l y  seen t h a t  
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V (x,) = V(xt) = - ( a  + b)x ( t )  - b[x ( t  - r) - x ( t ) ]  x ( t )  

2 t 

t-r 
+ 1 F ( r ) [ x ( t  - r )  - x( t )12  - I $(t - u)[x(u)  - x ( t ) ]  d u  

t 

t-r 
+ 1 F ( t  - u)[x(u)  - x( t ) ] [ - ( a  + b)x ( t )  - b[x ( t - r ) -x ( t ) ) ldu .  

If the expression for V i s  writ ten as an i n t e g r a l  from [t - r, t], then 

t h e  integrand Will be a pos i t ive  de f in i t e  quadratic form i n  

[x (u )  - x ( t ) ]  i f  the following i n e q u a t i e s  are satisfied: 

x ( t ) ,  [ x ( t - r ) - x ( t ) ] ,  

a + b < O  

If 

continuously d i f f e ren t i ab le  posi t ive function F(8), 0 5 0 S r. Consequently, 

t h e r e  e x i s t s  a pos i t ive  number q such t h a t  

a + b < 0, it i s  clear t h a t  these inequa l i t i e s  can be satisfied by a 

U 

for a l l  ~p In  C. If U = (Cp i n  C: cp2 (0) > I  F(e)[cp(0) - Cp(0)l2d8) 
-r 

then U satisfies i )  and ti) of Theorem 4 and the remark after Theorem 4 

implies t he  solution x = 0 i s  unstable. 

Example 9. Consider t he  equation 

wi th  a > 0, lbl < qa, 0 < q < 1 arbi t rary.  For 
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we have 

$ (1 - s k  6 (0) 

0 

-r 
and if U = ( 9 ) ~  C: 04(0) > 2a .f &@)de), then t h e  same argument as 

before shows t h a t  x = 0 i s  an unstable solut ion of t h i s  equation. 

If a < 0, Ib)d ai, one can choose 

and UBC Corollary 2 t o  prove t h e  zero solut ion is stable. 

Rotice t h a t  the uy V functionals may be used t o  show t h a t  t he  zero 

3 4 so lu t ion  of t(t) = ax (t) + bx (t = r) i s  stable or  unstable according as 

a < 0 or > 0, regardless  of the s ize  of b. One simply must operate i n  a 

s u f f i c i e n t l y  neighborhood of t h e  origin. 
A - d L  
h 
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4. 

we extend the  theory developed i n  section 2 t o  the case of i n f i n i t e  lag; t h a t  

i s  r = + m .  

examples of sec t ion  3 for  which r e s u l t s  were obtained independently of 

Extensions of t h e  theory t o  the case of i n f i n i t e  lag. In t h i s  sect ion,  

th is  theoryA* - +  beEl- t o  all of t h e  

r.  

T h i s  extension w i l l  be c l ea r  once an & l i m i t  set i s  defined and it  is known 

t h a t  an o l - l i m i t  s e t  i s  an invariant  set. The compact open topology on t h e  

space of continuous functions i s  employed in t h i s  extension and resu l ted  from 

a conversation w i t h  J. P. LaSalle. 

Suppose r 

r e a l  number IT, 

i f  r is f i n i t e  

s a given real number which we a l l o w  t o  be +m. For any 

the symbol [ a  - r, a] denotes t h e  closed i n t e r v a l  o-rhtga 

and t h e  ha l f  open i n t e r v a l  - < t d u when r = +-. Let 

C = C ( [ - r ,  03, €7’) be  t h e  space of a l l  continuous funct ions mapping t h e  i n t e r -  

va l  [-r, 03 i n t o  En. The topology on C is taken as t h e  compact open topo- 

logy which, i n  t h i s  case, i s  equivalent t o  uniform convergence on a l l  compact 

subsets  of [-r,  03. If r is f i n i t e ,  then C is 8 Banach space w i t h  t h e  

norm of an element CP of C given by 

If r = +-, then C i 6  not  aBanach space, b u t  a complete metr ic  space 

with a metr ic  P t h a t  can be defined as 

Notice t h a t  t h i s  metr ic  ha6 the important property t h a t  
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( 37) 

One can show t h a t  Q sequence 'pn +Cp [ t h a t  is, ~ ( r p , ,  Q,) -+ 0 as n -3 If 

uld only i f  fo r  every nonnegative integer YS n - - ) O D .  

For more d e t a i l 8  on t h i s  space of functions, see Arms 191, Bourbaki [lo], 

Kelley [ll]. 

IV, l1qn - d{L-N, o3 + O  

If H is a pos i t ive  constant, we use the  notat ion CH t o  denote t h e  

set ('p i n  C: do, 0) < H); tha t  is ,  t h e  open "ball" i n  C with center  

at 0 and rad ius  H. 

If a i s  my rea l  number and x i s  any continuous function wi th  domain 

[ a  - r, m) and range i n  ]En, we l e t  xt, t U, denote t h e  r e s t r i c t i o n  of 

x t o  the i n t e r v a l  [t - r, t]; that  is, xt belongs t o  C. 

If' f (9)  i s  a function defined for every Q, i n  CH and k ( t )  i s  t he  

right hand der iva t ive  of 

d i f f e r e n t i a l  equation: 

x( t) , we consider t h e  following autonomous funct ional  

A solut ion is defined the  same way as f o r  t h e  case of f i n i t e  lag. Relation 

(37) allows one t o  prove t h e  following existence and. uniqueness theorem: 

If f('p) i s  continuous i n  CH, then for any 'p in CH, there i s  a solut ion 

of (1) with  i n i t i a l  condition V a t  t = 0. If f('p) i s  l o c a l l y  Lipschi tz ian 

i n  'p; t h a t  is, for any H1 < H, t h e r e  e x i s t s  an such tha t  

then there i s  only one solut ion w i t h  I n i t i a l  condition q a t  t = 0 and t h e  

so lu t ion  x ( q )  depends continuously upon 9. Also, f (q)  l o c a l l y  Lipschi t i ian  
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t 

i n  Cp implies t h e  so lu t ions  can be extended i n  C u n t i l  t h e  boundary of CH 

i s  reached. 

S t a b i l i t y  and asymptotic s t a b i l i t y  Eire defined t h e  same way as for t h e  

f i n i t e  lag,  except use is made of t h e  metric P. RelAtion (57)  implies t h a t  

t h e  de f in i t i ons  made i n  t h i s  manner y ie ld  t h e  desired propert ies .  

In  t h e  remainder of t h e  discussion we assume f (q)  i s  continuous an0 

locally Lipschitzian i n  CH and the solut ion x(cp) of (38) with i n i t i a l  

con&ition Q! at  t = 0 is defined on [-r, a). A n  element Jr of C i s  

i n  n(cp), the  a l i m i t  s e t  of cp, i f  t he re  i s  a sequence of nonnegative 

r ea l  numbers tn, in --)a as n +OD, such t h a t  p(xt (p), $) 4 0  as n 4-. 

A set M i s  said t o  be invar ian t  i f  f o r  any J( i n  M and f o r  any u i n  

(--, 01, t he  solut ion xt(o, of (38) w i t h  i n i t i a l  value Jra at t = u 

i s  defined for  t Z u, xt(u, qu) belongs t o  M f o r  t 1 u and xo(u, qu) = JI. 

Notice t h a t  all so lu t ions  of (38) on an invar ian t  set must be defined on 

n 

(--, -). 

LtmML 3. If i n  CH i s  such tha t  t h e  solut ion x = x(Cp) of system (38 )  

with i n i t i a l  function Cp a t  t = 0 i s  defined on [-r, -) and p(xt,O)LH a 
for t i n  [O, -), then n(Cp) i s  a nonempty, compact, connected, invar ian t  

s e t  and P(xt, n(Cp)) + O  as t +m.  

1 

Proof: If P(xt, 0) .I! K, t 2 0, then there e x i s t s  a constant M such - 
t h a t  I x( t ) l  S K, 1 t ( t ) l  6 M f o r  all t Z 0. For any nonnegative integer  N, 

l e t  % = [-N, O]n[-r, 01. The r e s t r i c t i o n  of x t o  t h e  interval  [ t - N ,  t], 

t h 0, we l e t  llpll 

denote t h e  norm which i s  given by llCpll = . Consequently, t he re  

e x i s t s  B sequence t = t n ( R ) ,  tn + m  as n -b and a function * i n  C(tjN,$’) 

such t h a t  IIx 

cedure yields a Sequence 6 independent of N, and a function $ i n  

C ( [ - r ,  01, En) such t h a t  

% 
belong t o  a compact subset of C( %, E”). I n  Cf%, E”), 

% B i n %  

n 
- 41% -bO as n +-. Application of t h e  diagonalization pro- 

tn 

n’ 



Y 

t 

-39- 

f o r  all integers N = 0, 1, 2, ... . T h i s  proves Q ( T )  i s  nonempty. 

i l ( cp )  is obviously bounded. To show R(q) i s  closed, suppose qn i n  

t n J  n(cp) and Sn + * as n + a. There ex i s t s  a sequence of real numbers 

which can be chosen independent of f by the  dingonalization procedure, such 

t h a t  for any E > 0, there  i s  an integer lo = NO(€) such t h a t  

n 

Therefore, p(xt (Cp), w) < E for n L No which show6 t h a t  f i s  i n  n(cp). 
n 

To show n(q) is compact, suppose f n  in Q(cp),  n = 1, 2, ... . It 
follows f’rm t h e  first part of the proof of the  lemma, t h a t  

[-N, o)n[-r, O] belongs t o  a compact subset of C(g, E”). 
eppl les  t he  diagonalization procedure t o  show the  existence of a 

C([-r, 01, E”) 
as k 30. 

fn  r e s t r i c t ed  t o  

Consequently, one 

i n  + 
such t h a t  P ( $ ~  q )  + 0 and a subsequence % 3 m as k 4 

k 

To show n(q) i s  invariant,  suppose f is i n  Q ( c p )  and the  sequence 

t 4 0 as n + i s  such t h a t  p(xt ( c p ) ,  +) + O  as n + 00. For any integer 

R and any T i n  [-I?, N], choose no(N) so large t h a t  tn + T 2 0, -l d T S H. 

By an argument similar t o  t h a t  used i n  the first p s r t  of the  proof of t h i s  lemma, 

there  exists a subsequence sn of the  tn and a g (Cp) which belongs t o  

C(g, Rn) fo r  each T i n  I-!?, N] and 

n n 

’I ,N 

as n 4 uniformly for ‘I i n  [-N, N]. By use of t h e  diagonalization pro- 

cedure, one shows there e x i s t s  another subsequence p independent of N , n’ 



l 
~ 
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a n a g,(cp) which belongs t o  C([-r, 01, E ) for each T i n  (-=, m) such 

t h a t  

f o r  every in teger  R and all Y i n  (-m, =). 

It is easy t o  show t h a t  gT(cp) satisfies (38) for any T i n  (-=, m) 

and i t  is obvious t h a t  go(cp) = $. Therefore, n(Cp) i s  invariant .  n(Cp) i s  

obviously connected and t h e  lemma is proved. 

The remainder of the  results of sect ion 2 are ve r i f i ed  exact ly  as before 

t o  obtain su f f i c i en t  conditions for s t a b i l i t y  and i n s t a b i l i t y  f o r  t h e  case of 

i n f i n i t e  time lag. 



1. 
k 

2. 

F 

I 

3- 

4. 

5. 

6 .  

7. 

0.  

9. 

lo. 

11. 

Krasovskii, 1. N., Stab i l i t y  of motion. Moscow, 1939; Stanford 
Univ. Ress, 1963. 

m l e ,  J. P., The extent of asymptotic s t ab i l i t y .  Roc. lat. Acad. 
SC. , 46( 1960) , 363-363. 

H a l e ,  J. K. , A s t a b i l i t y  theorem fo r  funct ional-different ia l  equations. 
Proc. N a t ,  Acad. Sei., 50(1963), 942-946. 

Levin, J. J. and J. Nohel, On a nonlinear delay equation. J. Math. 
Ana. Appl. U( 1964), 31-44. 

Ergen, W. K., Xinetics of t he  circulat ing f u e l  nuclear reactor. 

Volterra, V. , Sur  la  thkorie mathkmatlque des ph&nomknes hkrkditaires. 

J. AppL Physics, 25( 1954) 9 702-711- 

J. Math, Pures Appl., 7(1928), 249-298. 

Volterra, V., Thhorie M a t h h t i q u e  de la  Lutte pour la Vic. Gauthier- 
V i l l a r s ,  1931. 

Bellman,  R. and K. Cooke, Differential-difference equations. Academic 
Ress, 193. 

Ar s R. F. A topology for spaces of transformations, Ann. Math. 
--mS%j, 480-495. 

Bo3oaki. I,, Espaces Vectoriels Topologiques, l i m e  5. Herman, Paris, 
1953 

Kelley, J. L., General Topology. Van Nostrand, New York, 1955. 


